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Abstract
Based on the detailed ab initio calculations of electronic structure for hcp-zinc
and bcc-ferromagnetic iron, we made an attempt to study a scale of anomalies
emerging in the calculations of elastic properties of these crystals as functions
of pressure, and determine a relation between these anomalies and electronic
topological transitions. Our calculations give grounds to believe that an
electronic topological transition in itself is not a cause of significant anomalies
in elastic properties of crystals but is, probably, an indicator of rearrangement
of the crystal energy spectrum: an indicator which is not even always present.
In some cases such rearrangement can cause significant anomalies in elastic
and other properties of the crystal.

As suggested by Lifshits [1] in 1960, electronic topological transitions (ETTs) in the energy
spectrum of crystals may cause anomalies in their elastic and thermodynamic properties.
However, the issue of the quantitative magnitude of those anomalies remains open because
of the qualitative nature of paper [1] and later ones [2, 3] related to that topic. ETT-related
anomalies of the crystal properties were observed in ab initio calculations as well, which in
some cases gave grounds to explain anomalies experimentally detected in the crystal properties
through the occurrence of ETTs. One of the best known attempts to explain the observed
anomalies in the crystal properties through electronic topological transitions is associated with
zinc. During the recent decade an active discussion has been focused on the problem of whether
there exists a volume-dependent c/a ratio anomaly at c/a = √

3 in the hcp structure of zinc
and whether this anomaly is associated with an ETT. A detailed description of the discussion
and relevant references are given in [4]. We will mention only some papers which aroused
interest in the anomaly in zinc [5–8] and initiated similar work in cadmium [9].

It has been worked out by now that experiments indicating the existence of the
anomaly were set up so that they did not provide hydrostatic compression (see [10]). Later
experiments [10, 11] did not detect any anomaly near c/a = √

3 exceeding an experimental
error.
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When the number of �k points in integration over the Brillouin zone increased essentially,
the previously computed anomaly in lattice parameters under compression disappeared [12],
in agreement with the recent experiments. However, it should be noted that recently that result
was called into question in [13].

This situation conveys the suggestion that similarly to experiments fictitious anomalies
might occur in the calculations due to insufficient accuracy in the ETT-affected areas. Actual
anomalies discussed by Lifshits [1] are probably rather small, at least in elastic properties of the
crystals. The scale and location of fictitious anomalies are likely to depend on the calculation
accuracy and this can be noticed when comparing the results obtained by different authors.
This paper is an attempt to study in detail the effect the calculation accuracy produces on the
lattice parameters at which ETTs emerge. Another issue we studied is how the calculation
accuracy influences the scale of the fictitious anomaly emerging in the calculation of the volume
dependence of the equilibrium c/a ratio in zinc. We also explored an effect of the calculation
accuracy on the calculated elastic properties of zinc in the vicinity of the ETT. We used a
number of �k points in the Brillouin zone as an indicator of the calculation accuracy and a
quantity

1

V

d2 E

d(c/a)2

∣∣∣∣ c/a=c0/a0
V =const

= 1

2
(C̃11 + C̃12) − 2C̃13 + C̃33,

as a characteristic of the elastic properties of zinc. Here C̃i j are elastic constants determining
the mechanical stability of the crystal under pressure [14].

First we made detailed calculations of a number of characteristics of the hcp crystal of
zinc under pressure using a larger number of �k-points in the Brillouin zone compared to other
papers. The calculated results are given first. As expected, they reasonably agree with the
data published so far. Then we tracked the variation of the ETT-related effects at a further
increase of the then relatively high accuracy. We also give an example of bcc ferromagnetic
iron (α-iron), where we believe an actual anomaly takes place and is accompanied by the
almost simultaneous emergence of eight ETTs [19]. However, in this case both the anomaly
and the ETTs are likely to be caused by significant rearrangement of the energy spectrum
which is well described even at a relatively small number of �k-points.

To obtain the results, we used the full potential linear muffin-tin orbital method
(FPLMTO) [15], which worked well in our previous studies [14, 16–19]. The exchange–
correlation functional was selected in the form offered in [20] and [21] for zinc and iron,
respectively. For each case we selected the form of exchange–correlation functional that
would most accurately reproduce the crystal density under normal conditions. Both cases
included gradient corrections [22]. 3s, 3p, 3d and 4s states in zinc and iron atoms are treated as
valence electrons, and semi-core states were not treated separately. The basis set was formed of
orbitals of s, p, d and f type. All relativistic effects were taken into account except spin–orbital
coupling for valence electrons, which were treated in a scalar-relativistic approximation. The
convergence criterion on the energy is set at 1 × 10−5 mRyd/cell.

In the prism-shaped Brillouin zone a mesh for integration over �k-space with the linear
tetrahedron method was constructed by dividing each edge into the same number of parts. Most
calculations were performed using a mesh with 40×40×40 �k-points for zinc, and 50×50×50 �k-
points for α-iron. To estimate the dependence of the calculation results on the number of �k-
points, this number was varied in a wide range. Figures below treat V0 as the specific volume
of the crystal at P = 0 and T = 0. Our calculations give V0 = 102.885 (au)3/atom for zinc,
and V0 = 78.1576 (au)3/atom for α-iron. Extrapolation of the experimental data from [23] at
P = 0 and T = 0 gives V0 = 100.5457 (au)3/atom for zinc and V0 = 79.0750 (au)3/atom
for α-iron. The specific energy of hcp-zinc obtained in our calculations can be described with
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Figure 1. Pressure in hcp structure of zinc versus relative volume. Experimental data: solid
squares— [11] at 40 K, open triangles— [25] at room temperature, open squares—data from the
shock wave experiments recalculated to T = 0 K [26]. Our calculation is shown with a curve.

the formula of Rose et al [24] slightly modified by adding two additional parameters:

E0e(V ) = E∞ − �E(1 + y + αy2 + βy3) exp(−y), (1)

where

y = 1 − x

x

r0

�
, x =

(v0

V

)1/3
, r0 =

(
3v0

4π

)1/3

, (2)

V is the specific volume, and v0 is the specific volume at which dE0e/dV = 0. Formula (1)
is not as universal as the formula from [24], but it better approximates our results. Values
v0, �,�E, E∞, α and β in formula (1) are treated as parameters. The formula for pressure is
derived from (1):

P0e(V ) = 3B0x(x − 1)

(
1 +

α − 3β

1 − 2α
y +

β

1 − 2α
y2

)
exp(−y), (3)

where

B0 = �E(1 − 2α)

12πr0�2
.

Selection of the parameters resulted in the following:

v0 = 0.140 43 cm3 g−1, � = 0.159 25 cm g−1,

�E = E∞ = 288.732 kJ g−1,

α = 0.467 07, β = 0.223 34.

(4)

Approximation of the calculated specific energy of hcp-zinc made according to formula (1)
with parameters (4) gives an error within the error of our computations.

It is worth noting that when using the results of ab initio calculations of cold curves in
practice it is possible to somewhat improve agreement with the available experimental data by
using formulae (1) and (3) to represent the cold energy and pressure of the actual system in
the following form:

Ecol(V ) = E0e(v0 · ξ), Pcol(V ) = v0

V0
P0e(v0 · ξ), (5)
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Figure 2. Equilibrium ratio c/a for hcp-structure zinc versus relative volume. The open squares
stand for experiment [11], and the solid curve with dots corresponds to our calculation with a
40 × 40 × 40 mesh.
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Figure 3. Pressure and specific magnetic moment for a compressed α-iron crystal versus relative
volume. Solid curves stand for calculations and triangles correspond to experiment [30].

where ξ = V/V0, V0 is the experimental specific volume at T = 0 and P = 0. Figure 1
shows the calculated pressure in a zinc crystal versus the relative volume as compared with
the experimental data from [11, 25, 26].

Figure 2 presents our calculations of the equilibrium ratio c/a in zinc versus the relative
volume at T = 0 K and the available experimental data at T = 40 K [11]. The c/a(V/V0)

points in figure 2 were found from the minima of E(c/a) calculated at constant V .
The following results were obtained for iron. Specific volume, bulk modulus and its

pressure derivative at T = 0 and P = 0 for α-iron from our calculations and calculations by
other authors are given in table 1 as well as the experimental data under normal conditions.
The calculated volume dependences of pressure and specific magnetic moment for compressed
α-iron crystal are shown in figure 3. This figure also gives the results of the experiments
determining the compressibility of α-iron. Rather good agreement between the calculations
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Figure 4. Change in the Fermi surface of zinc within the first partially occupied band.

Table 1. Calculated (T = 0 K) and experimental values of specific volume V0, bulk modulus
B0, pressure derivative of bulk modulus B ′

0 and specific magnetic moment µ for crystals of α-iron
under atmospheric pressure.

V0 ((au)3/atom) B0 (GPa) B ′
0 µ (µB)

Calculations

This work 78.158 168.6 5.7 2.31
Leung et al [27] 80.629 174.0 — 2.20
Dufek et al [28] 76.780 215.0 — 2.21
Stixrude et al [29] 76.840 189.0 4.9 2.17

Experiments (room temperature)

Pearson [31] 79.063 — — 2.12
Gschneidner [32] 79.496 171.6 — —
Kittel [33] 79.845 168.3 — 2.22
Jephcoat et al [34] 79.510 172.0 — —
Guinan et al [35] — 166.4 5.29 —
Vaidya et al [36] — 175.8 7.67 —

and available experimental data proves the high accuracy of the calculations both for zinc and
for iron crystals.

Our calculations have shown that under ambient conditions the Fermi surface of zinc
consists of three parts corresponding to three partially occupied energy bands, which we will
number from the upper one downwards. Seven ETTs are detected within the pressure range
from −5 to 35 GPa. One ETT occurs in the first band, four in the second band and two
in the third one. Figures 4–6 illustrate the correspondent topological changes in the Fermi
surface. Pressures corresponding to the Fermi surfaces shown in figures 4–6 were obtained in
the calculations with 40×40×40 mesh. But keep in mind that pressures at which ETTs occur
significantly depend on the calculation accuracy. Figure 7 shows the band-structure dispersion
E(�k) at P = 0 and also prior to and after the ETTs marked as 2.4 in figure 5 and 3.2 in figure 6.

The curve showing specific energy versus strain at constant volume in the vicinity of the
ETT is parabola-like with ETT-induced wavy perturbation. The amplitude of this perturbation
depends on the calculation accuracy. As V/V0 varies in the vicinity of the ETT the associated
perturbation moves from one parabola branch to another,and as it passes the parabola minimum
it changes dramatically the volume dependence of the ratio c/a. This manifests itself as an
anomaly in the calculated volume dependence of the ratio c/a. Figure 8 shows the specific
energy versus ratio c/a at V/V0 = 0.96 at the moment when the ETT-induced perturbation
passes the parabola minimum in the calculation on the 40 × 40 × 40 mesh. Figure 8 gives
the density of the states on the Fermi surface versus the ratio c/a at V/V0 = 0.96 as well.
The density of states on the Fermi surface as a function of c/a has peaks corresponding to the
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Figure 5. Change in the Fermi surface of zinc within the second partially occupied band.
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Figure 6. Change in the Fermi surface of zinc within the third partially occupied band.

topological changes of the Fermi surface labelled as 1.1 and 2.2 in figures 4 and 5, respectively.
This value as a function of V/V0 has peaks too. The shape of the E(c/a) curve in figure 8
shows that the calculated dependence of the equilibrium parameter c/a on specific volume
can have minor anomalies like isostructural transitions at those values of specific volume at
which the ETT occurs near equilibrium c/a. These anomalies are noticeable in figure 2.
Locations of anomalies, which are noticeable in figure 2, were determined in the calculations
on the (40 × 40 × 40) mesh. However, when the number of k-points changes, the location
of anomalies shifts together with the location of ETTs. Figure 8 also shows that the elastic
constants are very sensitive to the accuracy of ETT description. This corresponds to the case
when the accuracy of the elastic constant calculation is completely determined by the ETT
description accuracy. If, for example, the dependence in figure 8 is approximated with a
parabola, the second derivative can vary more than by an order of magnitude depending on the
interval within which the approximation is made.

These conclusions can be drawn from the calculations on a rather fine 40 × 40 × 40 mesh
within the Brillouin zone.

Our later calculations have shown that an answer to the question of at what pressure this
or that ETT occurs, and what size the effects associated with it have, depends significantly on
the number of k-point in the mesh used for integration over �k-space.

Figure 9 shows the density of states on the Fermi surface of zinc versus the ratio c/a
for specific volume V/V0 = 0.96 at different numbers of mesh points within the Brillouin
zone. Peaks on the curves correspond to the ETTs labelled as 1.1 and 2.2 in figures 4 and 5,
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Figure 7. Hcp-zinc: band structure along high-symmetry directions in the first Brillouin zone
around the Fermi energy. The upper, middle and lower panels show the band structure at P = 0, 15
and 23 GPa, respectively.

respectively. If a dependence E(c/a) similar to that in figure 8 is built for each curve in
figure 9, the ETT-induced perturbation will appear to be located in different parabola areas.
Correspondingly, approximation of each curve will give an individual equilibrium ratio c/a
and an individual value of the second derivative at the minimum, that means that individual
elastic constants will correspond to the appropriate calculation accuracy. From figure 9 it is
obvious that even an 80 × 80 × 80 mesh containing 512 000 points in the Brillouin zone is
insufficient for determining ETT positions for zinc. The number of �k-points in the meshes
used seems insufficient even for making convergence to the exact result smooth.

In addition, an obvious trend is observed which shows that the ETT-induced perturbations
in the density of states on the Fermi surface (and, therefore, in energy and in elastic constants)
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Figure 8. Hcp-zinc: calculated specific energy and density of states on the Fermi surface versus
ratio c/a at V/V0 = 0.96 and the (40 × 40 × 40) mesh. The dashed curve gives an approximation
of E(c/a) with a cubic polynomial.

decrease with the increase of mesh point number in �k-space. It is possible to suppose that a
significant effect of the isolated ETT on the elastic properties of crystals previously observed
in the calculations done by different authors results from the use of insufficiently fine meshes.
At the same time, in the cases when crystal strain is not accompanied by topological changes
of the Fermi surface and dramatic changes in the density of states on the Fermi surface, the
elastic constants can be calculated at a rather good accuracy even on the coarse meshes.

Our calculations give grounds to believe that an ETT in itself is not a cause of significant
anomalies in elastic properties of crystals but is, probably, an indicator of rearrangement of
the crystal energy spectrum: an indicator which is not even always present. In some cases
such rearrangement can cause significant anomalies in the elastic and other properties of the
crystal.

A crystal of α-iron is an interesting example. Calculations show [19] that α-iron
experiences 12 ETTs within the range of 0.85 � V/V0 � 1.2. Eight of them happen when
specific volume varies within 1%, and this evidences a significant rearrangement of energy
spectrum, which turns out to cause loss of mechanical stability of the crystal. Topological
changes taking place on the Fermi surface within the compression range of 0.85 � V/V0 � 1.2
are illustrated in [19]. The density of states on the Fermi surface as a function of relative volume
which reflects this spectrum rearrangement is shown in figure 10. In this case variation of the
number of mesh points for integration over �k-space did not cause any significant change in the
results. Spectrum rearrangement results in a significant change in the number of electrons with
positive and negative spin projection, thus causing a sudden change in the magnetic moment of
the crystal. In addition, an area appears in the dependence of pressure on the relative volume,
where dP/dV > 0, and this means that the α-iron crystal has lost its mechanical stability.
Figure 11 shows the dependence of the pressure and magnetic moment in an α-iron crystal on
the relative volume in the anomaly area.

As far as we know anomalies in the volume dependences of crystal specific energy and
pressure similar to those shown in figure 11 have not been observed and reported yet in any
theoretical or experimental works. So far only loss of mechanical stability by α-iron crystals
at very high pressures has been reported [37]. Therefore, it would be extremely interesting to
experimentally investigate α-iron crystals at negative pressures and low temperatures to detect
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Figure 9. Density of states on the Fermi surface of hcp-zinc versus ratio c/a at V/V0 = 0.96
calculated using different meshes within the Brillouin zone.

unusual elastic properties of these crystals. In this connection the new method of measuring
the speed of sound proposed in [38] might be very helpful. It measures the speed of sound both
in the compression area and at crystal tension. Experiments with the filiform α-iron crystals
(whiskers) can also be useful. An abrupt change of magnetic moment of the iron sample at the
moment when the shock wave reaches its surface can become indirect evidence of the existing
anomaly in the elastic properties of α-iron.

Two important conclusions can be drawn from the obtained results. First, noticeable
anomalies in the elastic properties of the crystal can take place within the density area where
ETTs occur. However, the anomalies are probably caused not by ETTs themselves but by
rather intensive rearrangement of the energy spectrum of the crystal during which the ETTs
occur (or do not occur).

Second, the pressure at which this or that ETT occurs in zinc according to the calculations
can significantly depend on the parameters determining the calculation accuracy, in particular,
on the number of �k-points in the used mesh. For different meshes, the location of one and the
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Figure 10. Density of states on the Fermi surface of α-iron as a function of relative volume.
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Figure 11. Pressure and magnetic moment of α-iron in the anomaly area versus relative volume.

same ETT and effects related to it can considerably differ even in the cases when calculations
of specific energy beyond the ETT-affected area give very close results on those meshes. Thus,
prior to determining the ETT location or its effect on the crystal properties from the calculated
results, it is necessary to thoroughly investigate the dependence of the results on the number of
�k-points in the used mesh and on other parameters influencing the accuracy of the numerical
simulation. We have drawn this conclusion on the basis of calculations for zinc. It would be
very interesting to check how general this conclusion is by studying other crystals.
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